Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons.
نویسندگان
چکیده
Activation of the extracellular signal-regulated kinase 1 (ERK1) and ERK2 by neurotrophins, neuronal activity, or cAMP has been strongly implicated in differentiation, survival, and adaptive responses of neurons during development and in the adult brain. Recently, a new member of the mitogen-activated protein (MAP) kinase family, ERK5, was discovered. Like ERK1 and ERK2, ERK5 is expressed in neurons, and ERK5 stimulation by epidermal growth factor is blocked by the MAP kinase/ERK kinase 1 (MEK1) inhibitors PD98059 and U0126. This suggests the interesting possibility that some of the functions attributed to ERK1/2 may be mediated by ERK5. However, the regulatory properties of ERK5 in primary cultured neurons have not been reported. Here we examined the regulation of ERK5 signaling in primary cultured cortical neurons. Our data demonstrate that, similar to ERK1/2, ERK5 is activated by neurotrophins including brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4. BDNF stimulation of ERK5 required the activity of MEK5. Surprisingly, ERK5 was not stimulated by cAMP or neuronal activity induced by glutamate or membrane depolarization. In contrast to ERK1/2, ERK5 strongly activated the transcriptional activity of myocyte enhancer factor 2C (MEF2C) in pheochromocytoma 12 (PC12) cells and was required for neurotrophin stimulation of MEF2C transcription in both PC12 cells and cortical neurons. Furthermore, ERK1/2, but not ERK5, induced transcription from Elk1 and the cAMP/ Ca(2+) response element in PC12 cells. Our data suggest that mechanisms for regulation of ERK5 and downstream transcriptional pathways regulated by ERK5 are distinct from those of ERK1/2 in neurons. Furthermore, ERK5 is the first MAP kinase identified whose activity is stimulated by neurotrophins but not by neuronal activity.
منابع مشابه
ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons.
Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase family whose biological function in the CNS has not been defined. In contrast to ERK1 and ERK2, which are activated by neurotrophins (NTs), cAMP, and neuronal activity in cortical neurons, ERK5 is activated only by NTs. Here, we report that ERK5 expression is high in the brain during early embryon...
متن کاملCell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1.
Serum and growth factors activate both the canonical extracellular signal-regulated kinase (ERK) 1/2 pathway and the ERK5/big mitogen-activated protein kinase 1 (BMK) 1 pathway. Pharmacological inhibition of the ERK1/2 pathway using PD98059 and U0126 prevents cyclin D1 expression and inhibits cell proliferation, arguing that the ERK1/2 pathway is rate limiting for cell-cycle re-entry. However, ...
متن کاملNon-redundant function of the MEK5-ERK5 pathway in thymocyte apoptosis.
The mitogen-activated protein kinases (MAPKs) ERK1/2, p38, and JNK are thought to determine survival-versus-death fate in developing thymocytes. However, this view was challenged by studies using 'MEK1-ERK1/2-specific' pharmacological inhibitors, which block both positive and negative selection. Recently, these inhibitors were also shown to affect MEK5, an upstream activator of ERK5, another cl...
متن کاملThe signaling pathway leading to extracellular signal-regulated kinase 5 (ERK5) activation via G-proteins and ERK5-dependent neurotrophic effects.
Extracellular signal-regulated kinases (ERKs) or mitogen-activated protein kinases (MAPKs) are involved in cellular proliferation, differentiation, migration, and gene expression. The MAPK family includes ERK1/2, c-Jun NH(2)-terminal kinases 1, 2, and 3, p38MAPK alpha, beta, gamma, and -delta, and ERK5 as conventional MAPKs and ERK3, ERK4 NLK, and ERK7 as atypical MAPKs. Like other MAPKs, ERK5 ...
متن کاملIntensity-dependent activation of extracellular signal-regulated protein kinase 5 in sensory neurons contributes to pain hypersensitivity.
Alterations in the intracellular signal transduction pathway in primary afferents may contribute to pain hypersensitivity. Recently, we have reported that the phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) occurs in primary afferent neurons in response to noxious stimulation of the peripheral tissue, i.e., activity-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2001